info prev up next book cdrom email home

Euler's Pentagonal Number Theorem


\begin{displaymath}
\prod_{n=1}^\infty (1-x^n) =\sum_{n=-\infty}^\infty (-1)^nx^{n(3n+1)/2},
\end{displaymath} (1)

where $n(3n+1)/2$ are generalized Pentagonal Numbers. Related equalities are
\begin{displaymath}
\prod_{k=1}^\infty (1-x^kt)=\sum_{n=0}^\infty {(-1)^nx^{n(n+1)/2}t^n\over \prod_{k=1}^n (1-x^k)}
\end{displaymath} (2)


\begin{displaymath}
\prod_{k=1}^\infty (1-x^kt)^{-1}=\sum_{n=0}^\infty {t^n\over \prod_{k=1}^n (1-x^k)}.
\end{displaymath} (3)

See also Partition Function P, Pentagonal Number




© 1996-9 Eric W. Weisstein
1999-05-25